1,696 research outputs found

    Lukewarm black holes in quadratic gravity

    Full text link
    Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon

    The geometry of manifolds and the perception of space

    Full text link
    This essay discusses the development of key geometric ideas in the 19th century which led to the formulation of the concept of an abstract manifold (which was not necessarily tied to an ambient Euclidean space) by Hermann Weyl in 1913. This notion of manifold and the geometric ideas which could be formulated and utilized in such a setting (measuring a distance between points, curvature and other geometric concepts) was an essential ingredient in Einstein's gravitational theory of space-time from 1916 and has played important roles in numerous other theories of nature ever since.Comment: arXiv admin note: substantial text overlap with arXiv:1301.064

    New results for the missing quantum numbers labeling the quadrupole and octupole boson basis

    Full text link
    The many 2k2^k-pole boson states, NkvkαkIkMk>|N_kv_k\alpha_k I_kM_k> with k=2,3k=2,3, realize the irreducible representation (IR) for the group reduction chains SU(2k+1)R2k+1R3R2SU(2k+1)\supset R_{2k+1}\supset R_3\supset R_2. They have been analytically studied and widely used for the description of nuclear systems. However, no analytical expression for the degeneracy dv(I)d_v(I) of the R2k+1R_{2k+1}'s IR, determined by the reduction R2k+1R3R_{2k+1}\supset R_3, is available. Thus, the number of distinct values taken by αk\alpha_k has been so far obtained by solving some complex equations. Here we derive analytical expressions for the degeneracy dv(I)d_v(I) characterizing the octupole and quadrupole boson states, respectively. The merit of this work consists of the fact that it completes the analytical expressions for the 2k2^k-pole boson basis.Comment: 10page

    Implication of Compensator Field and Local Scale Invariance in the Standard Model

    Full text link
    We introduce Weyl's scale symmetry into the standard model (SM) as a local symmetry. This necessarily introduces gravitational interactions in addition to the local scale invariance group \tilde U(1) and the SM groups SU(3) X SU(2) X U(1). The only other new ingredients are a new scalar field \sigma and the gauge field for \tilde U(1) we call the Weylon. A noteworthy feature is that the system admits the St\" uckelberg-type compensator. The \sigma couples to the scalar curvature as (-\zeta/2) \sigma^2 R, and is in turn related to a St\" uckelberg-type compensator \varphi by \sigma \equiv M_P e^{-\varphi/M_P} with the Planck mass M_P. The particular gauge \varphi = 0 in the St\" uckelberg formalism corresponds to \sigma = M_P, and the Hilbert action is induced automatically. In this sense, our model presents yet another mechanism for breaking scale invariance at the classical level. We show that our model naturally accommodates the chaotic inflation scenario with no extra field.Comment: This work is to be read in conjunction with our recent comments hep-th/0702080, arXiv:0704.1836 [hep-ph] and arXiv:0712.2487 [hep-ph]. The necessary ingredients for describing chaotic inflation in the SM as entertained by Bezrukov and Shaposhnikov [17] have been provided by our original model [8]. We regret their omission in citing our original model [8

    New Models of General Relativistic Static Thick Disks

    Full text link
    New families of exact general relativistic thick disks are constructed using the ``displace, cut, fill and reflect'' method. A class of functions used to ``fill'' the disks is derived imposing conditions on the first and second derivatives to generate physically acceptable disks. The analysis of the function's curvature further restrict the ranges of the free parameters that allow phisically acceptable disks. Then this class of functions together with the Schwarzschild metric is employed to construct thick disks in isotropic, Weyl and Schwarzschild canonical coordinates. In these last coordinates an additional function must be added to one of the metric coefficients to generate exact disks. Disks in isotropic and Weyl coordinates satisfy all energy conditions, but those in Schwarzschild canonical coordinates do not satisfy the dominant energy condition.Comment: 27 pages, 14 figure

    Research in interactive scene analysis

    Get PDF
    Cooperative (man-machine) scene analysis techniques were developed whereby humans can provide a computer with guidance when completely automated processing is infeasible. An interactive approach promises significant near-term payoffs in analyzing various types of high volume satellite imagery, as well as vehicle-based imagery used in robot planetary exploration. This report summarizes the work accomplished over the duration of the project and describes in detail three major accomplishments: (1) the interactive design of texture classifiers; (2) a new approach for integrating the segmentation and interpretation phases of scene analysis; and (3) the application of interactive scene analysis techniques to cartography

    The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge

    Full text link
    A general analytic procedure is developed for the post-Newtonian limit of f(R)f(R)-gravity with metric approach in the Jordan frame by using the harmonic gauge condition. In a pure perturbative framework and by using the Green function method a general scheme of solutions up to (v/c)4(v/c)^4 order is shown. Considering the Taylor expansion of a generic function ff it is possible to parameterize the solutions by derivatives of ff. At Newtonian order, (v/c)2(v/c)^2, all more important topics about the Gauss and Birkhoff theorem are discussed. The corrections to "standard" gravitational potential (tttt-component of metric tensor) generated by an extended uniform mass ball-like source are calculated up to (v/c)4(v/c)^4 order. The corrections, Yukawa and oscillating-like, are found inside and outside the mass distribution. At last when the limit fRf\rightarrow R is considered the f(R)f(R)-gravity converges in General Relativity at level of Lagrangian, field equations and their solutions.Comment: 16 pages, 10 figure

    Graphene tests of Klein phenomena

    Full text link
    Graphene is characterized by chiral electronic excitations. As such it provides a perfect testing ground for the production of Klein pairs (electron/holes). If confirmed, the standard results for barrier phenomena must be reconsidered with, as a byproduct, the accumulation within the barrier of holes.Comment: 8 page

    General features of Bianchi-I cosmological models in Lovelock gravity

    Full text link
    We derived equations of motion corresponding to Bianchi-I cosmological models in the Lovelock gravity. Equations derived in the general case, without any specific ansatz for any number of spatial dimensions and any order of the Lovelock correction. We also analyzed the equations of motion solely taking into account the highest-order correction and described the drastic difference between the cases with odd and even numbers of spatial dimensions. For power-law ansatz we derived conditions for Kasner and generalized Milne regimes for the model considered. Finally, we discuss the possible influence of matter in the form of perfect fluid on the solutions obtained.Comment: extended version of published Brief Repor

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page
    corecore